Hydrostatic pressure effects on a hydrated lipid inverse micellar Fd3m cubic phase.
نویسندگان
چکیده
Over a range of hydration, unsaturated diacylglycerol/phosphatidylcholine mixtures adopt an inverse micellar cubic phase, of crystallographic space group Fd3m. In this study hydrated DOPC:DOG mixtures with a molar ratio close to 1 : 2 were examined as a function of hydrostatic pressure, using synchrotron X-ray diffraction. The small-angle diffraction pattern at atmospheric pressure was used to calculate 2-D sections through the electron density map. Pressure initially has very little effect on the structure of the Fd3m cubic phase, in contrast to its effect on hydrated inverse bicontinuous cubic phases. At close to 2 kbar, a sharp transition occurs from the Fd3m phase to a pair of coexisting phases, an inverse hexagonal H(II) phase plus an (ordered) lamellar phase. Upon increasing the pressure to 3 kbar, a further sharp transition occurs from the H(II) phase to a (fluid) lamellar phase, in coexistence with the ordered lamellar phase. These transitions are fully reversible, but show hysteresis. Remarkably, the lattice parameter of the Fd3m phase is practically independent of pressure. These results show that these two lipids are miscible at low pressure, adopting a single lyotropic phase (Fd3m); they then become immiscible above a critical pressure, phase separating into DOPC-rich and DOG-rich phases.
منابع مشابه
Structural and rheological investigation of Fd3m inverse micellar cubic phases.
In the present study we demonstrate that a bulk inverse micellar cubic phase of Fd3m structure can be obtained by adding a hydrophobic component, such as the food-grade limonene, to the binary system monolinolein/water in a well-defined composition. The Fd3m structure studied in this work had a very slow kinetics of formation, as a consequence of partitioning of water into two types of micelle ...
متن کاملCompact polar moieties induce lipid-water systems to form discontinuous reverse micellar phase.
The role of molecular interactions in governing lipid mesophase organization is of fundamental interest and has technological implications. Herein, we describe an unusual pathway for monoolein/water reorganization from a bicontinuous mesophase to a discontinuous reverse micellar assembly, directed by the inclusion of polar macromolecules. This pathway is very different from those reported earli...
متن کاملA reverse micellar mesophase of face-centered cubic Fm3m symmetry in phosphatidylcholine/water/organic solvent ternary systems.
We report the formation of a reverse micellar cubic mesophase of symmetry Fm3m (Q(225)) in ternary mixtures of soy bean phosphatidylcholine (PC), water, and an organic solvent, including cyclohexane, (R)-(+)-limonene, and isooctane, studied by small-angle X-ray scattering (SAXS) and oscillatory shear rheology at room temperature. The mesophase structure consists of a compact packing of remarkab...
متن کاملLactoferrin-derived antimicrobial peptide induces a micellar cubic phase in a model membrane system.
The observation of a micellar cubic phase is reported for a mixture of an antimicrobial peptide from the Lactoferrin family, LFampin 265-284, and a model membrane system of dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (3:1), as derived from small-angle x-ray diffraction (SAXD) measurements. The system shows remarkable thermotropic polymorphism: the peptide disrupts the lipid b...
متن کاملPolymorphic phase behavior of lysopalmitoylphosphatidylcholine in poly(ethylene glycol)-water mixtures.
The polymorphic phase behavior of 1-palmitoyl-2-lyso-sn-glycero-3-phosphocholine dispersions in excess water has been studied as a function of temperature and poly(ethylene glycol) (PEG) concentration, using proton dipolar-decoupled 31P NMR spectroscopy and turbidity measurements. The phase behavior was found to depend on both lipid concentration and PEG concentration, and most of the NMR exper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 8 شماره
صفحات -
تاریخ انتشار 2011